Latest News - Headlines

Nanoparticles, future diagnostic and therapeutic techniques

Nanoparticles play a significant role in the development of future diagnostic and therapeutic techniques for tumors. 


For example as transporters for drugs or as contrast agents. Absorption and dispersion of nanoparticles in tumor tissue depend strongly on particle size. In order to systematically study this, scientists at the Massachusetts Institute of Technology and Harvard Medical School have now produced a set of fluorescent nanoparticles of various diameters between 10 and 150 nm. As the team led by Moungi G. Bawendi and Daniel G. Nocera reports in the journal Angewandte Chemie, they were able to use these to simultaneously follow the dispersion of particles of different sizes through mouse tumors in real time.

In order for nanoparticle-based biomedical techniques to work, the nanoparticles must be of optimal size. For studies, it is thus desirable to simultaneously observe the behavior of particles of different size in the same tumor in vivo. This requires chemically comparable particles of various sizes, each size group consisting of particles of uniform size and composition. Additionally, it must be possible to simultaneously detect and differentiate the various particles. Also, they must be biocompatible, and may not form aggregates or adsorb proteins. This complex challenge has now been met.

The researchers developed a set of nanoparticles in various sizes, which can be detected by means of fluorescing quantum dots. Quantum dots are semiconducting structures at the boundary between macroscopic solid bodies and the quantum-mechanical nano-world. By selectively producing quantum dots of different sizes, it is possible to obtain quantum dots that fluoresce at different defined wavelengths, which allows them to be simultaneously detected and differentiated. <...>

(Via PhysOrg.com) -- 

| www.noenigma.com | All rights reserved - Copyright © 2010 - 2017

Theme images by richcano. Powered by Blogger.